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Abstract. An interionic potential to describe the interactions in PbF2 is constructed fromab initio
calculations. The potential is based upon formal ionic charges and includes polarization effects
arising from the induced dipoles on both anions and cations. The cation polarization effects are
shown to be crucial to explain observable differences between PbF2 and alkaline-earth fluorides
of comparable cation size (SrF2 and BaF2). In particular, the lower transition pressure between
the β- (fluorite) andα- (cotunnite) phases and the qualitative difference between the shapes of
the phonon dispersion for PbF2 and the alkaline earths are reproduced. Simulations show a
transition to a superionic conducting state in theβ-phase, though at a temperature slightly higher
than that observed experimentally. No ionic conduction is observed in theα-phase at comparable
temperatures, in agreement with experiment. The pattern of diffuse neutron scattering predicted
by the simulations in the superionic domain is shown to reproduce the distinctive distribution of
intensity observed experimentally.

1. Introduction

Lead fluoride is one of a number of systems of stoichiometry MX2 which adopt the cubic
fluorite crystal structure and which exhibit fast-ion conduction [1]. Of the halides in this
class, it is the one exhibiting the lowest transition temperature to the conducting régime and,
as such, has been extensively studied experimentally [2–4]. Related oxide systems include
(cubic) zirconia and uranium dioxide, where the ionic conduction process has important
technological implications [5, 6]. The focus of our present simulation work is on developing
realistic simulation models, by appeal to first-principles calculations, so as to examine how
the properties of the material are affected by the underlying chemistry. This relates not just
to the mechanism of the ionic conduction process itself, but also to the stability of the fluorite
structure relative to other phases which are not ionically conducting. In the case of PbF2, a
non-conducting cotunnite (α-PbCl2) phase is reached at a transition pressure of 0.5 GPa. Both
the degree of ionic conduction and the stability of the cubic phase relative to other phases
are affected by the addition of other binary compounds of different stoichiometry. In PbF2,
addition of KF has been shown to promote a large increase in ionic conduction and a reduction
in the transition temperature [7]. The cubic phase of zirconia is stabilized by the addition of
Y2O3 or CaO to produce highly conductive materials which act as oxide sensors. One reason
for pursuing the goal of a ‘realistic’ simulation model is the hope that such potentials could be
transferredto such mixtures, thereby permitting a reliable comparison of their properties with
those of the parent material.

In order to illustrate the ‘chemical’ effects on the properties of PbF2 it is instructive to
compare with the alkaline-earth fluorides (CaF2, SrF2 and BaF2), with which PbF2 shares
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broad similarities. Table 1 lists the lattice energy, superionic transition temperatures, melting
temperatures and transition pressures for the transition from the fluoriteβ-form (eight-
coordinate cations) to the cotunnite (α-form ≡ α-PbCl2, 7 + 2 coordinate cations) structure.
In the simplest ‘rigid-ion’ model of the interactions, PbF2 would be expected to exhibit similar
behaviour to SrF2 and BaF2, since the Pb2+ ionic radius is intermediate between those of Sr2+

and Ba2+ [8]. However, PbF2 stands out as anomalous in that neither the superionic and melting
temperatures nor the phase transition pressure fit the pattern of the alkaline-earth fluorides with
increasing cation radius. Both the melting and superionic transition temperatures appear at
significantly lower temperatures whilst the transition to the cotunnite structure occurs at a
significantly lower pressure. Furthermore, whilst the experimental phonon dispersion curves
for CaF2, SrF2 and BaF2 [9–11] show very similar line shapes in the high-symmetry directions,
the experimental PbF2 phonon dispersion curves [3] appear ‘anomalous’ in that some modes
are particularly soft. One factor which this rigid-ion picture does not allow for is the much
greater polarizability of the Pb2+ ion relative to the alkaline earths. This arises because the
outer-electron configuration of the Pb2+ ion is 6s2, with the result that low-energy dipole-
allowed transitions to the 6p orbitals are possible. The refractive index indicates a large
lead-cation polarizability [12] and this is confirmed by electronic structure calculations, which
giveαPb2+ = 17.9 au [13] compared withαSr2+ = 5.2 au [14]. Furthermore, the polarizability of
the lead cation is significantly greater than that of the fluoride anion (αF− = 7.78 au [13]). That
SnO and PbO adopt relatively low-symmetry crystal structures (anti-litharge) compared to the
alkaline-earth oxides has already been attributed to cation polarization [15,16]. It is tempting,
even at this early stage, to assign the anomalously low superionic transition temperature in
PbF2 to this greater cation polarizability. Indeed, previous work on CaF2 has already shown
how the inclusion of cation polarization effects does lower such transition temperatures by
reducing the barrier heights for the activated diffusion processes [17] of the mobile F− ions.
Similarly, the fact that the lattice energy is substantially larger than that of SrF2 (which has a
smaller lattice constant) could be due to a greater dispersion energy for the more polarizable
cation.

Table 1. Comparison of a range of experimental properties for the fluorite structures for PbF2 and
three alkaline-earth halides.

System σ+/Å a0/Å Tc/K Tm/K Pt /GPa 1Hlatt

CaF2 0.99 5.45 1430 1696 10.0 2609.2
SrF2 1.13 5.78 1400 1723 6.0 2448.2
BaF2 1.35 6.18 1230 1550 5.0 2307.2
PbF2 1.20 5.92 711 1128 0.5 2487.2

In previous MD simulation work on PbF2, empirically parametrized, ‘rigid-ion’ effective
pair potentials have been used, in which polarization (and other, possible many-body) effects
are subsumed within the effective interaction parameters. A consequence of this is that potential
parameters acquire unphysical values if viewed as properties of true pair interactions; in
particular, the ‘dispersion’ parametersC6 for the F–F interactions in CaF2 were found to
be about six times greater than could be justified on anab initio basis. This enhanced F–F
attraction promoted F−-ion disorder in the CaF2 simulation, leading to superionic behaviour.
In a realistic ionic potential, this effect appears to be attributable to the polarization effects.
Although the effective pair potential appears to give quite good agreement with the experimental
anion diffusion coefficients for the pure materials (for PbF2 as well as CaF2), other properties,
such as the phonon dispersion curves, are less well predicted, and such potentials do not transfer
well to related systems. We have already highlighted the significance of mixed-cation fluorite
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systems technologically, and that studying them is one goal. Shell models, which contain an
explicit representation of the polarization effects, have been developed for PbF2, but these have
proven unstable in MD simulations [18] due to the strong interactions of the induced dipoles
on cations and anions in simulations at finite temperature. In this work we show how it is
possible to overcome this technical challenge using the polarizable-ion methodology (PIM),
described in full elsewhere [19].

The interaction model includes full, formal charges on the ions, and the Pb2+ and F−

ions have their full polarizabilities, as above. Wherever possibleab initio calculations are
used to parametrize sections of the model unambiguously. In order to examine the factors
affecting the observable properties, simulations have been performed with related models in
which the polarization effects are omitted or enhanced. The simulation model is validated
by comparison with experimental data on the lattice energy and volume (including their
relationship for the fluorite and cotunnite structures), the phonon dispersion curves, and the ion
mobility in the ionically conducting ŕegime. We also compare the calculated coherent diffuse
neutron scattering intensities with experiment: this observable directly probes the correlations
on the disordered fluoride-ion sublattice and has been shown to exhibit different characteristic
patterns for PbF2 and CaF2, suggesting that it may be a stringent test for the fluoride disorder
in the simulated system. The mechanism of the ionic conduction in PbF2, and its relationship
to the disorder sensed in the diffuse scattering experiments, and the role of other cations in
promoting ionic diffusion will be discussed elsewhere.

2. Constructing and testing the potential

The interaction model includes a pair potential, which incorporates short-range repulsion and
dispersion, together with an account of the polarization effects which result from the induction
of dipoles on both the Pb2+ and F− ions. Note that in the perfect fluorite structure, all ions
sit at sites of high symmetry, so dipole induction cannot contribute to the energetics, which is
therefore fully determined by the pair potential in this representation.

2.1. An ab initio pair potential

The procedure for generating an effective pair potential (EPP) is analogous to that previously
used for CaF2 [17]. Pyper has calculated repulsion and dispersion energies for PbF2 in
the perfect crystallineβ-form (the fluorite) as a function of lattice parameter,R, using
ab initio electronic structure methods [13]. The repulsive energy,Urep(R), due to cation–
anion interactions, is expressed as the sum of two terms: a ‘self-energy’ (or ‘rearrangement
energy’),Uself

a , which is the energy required to compress the electron density of aniona from
that of a free ion into the crystal at lattice parameterR, and an ‘overlap energy’,Uov

ab (R), which
is the energy of overlap of the anion electron density, compressed to the extent appropriate
to lattice parameterR, with the cation electron density. An effective pair potential for the
cation–anion interactions is constructed by combining these two terms:

4uEPP+− (R) = Uself
− (R) + 4Uov

+−(R). (2.1)

The factor of four arises from the anion–cation coordination in the fluorite crystal. Whilst
it is possible to construct a model in which the integrity of the two terms is maintained (a
compressible-ion mode, CIM [20]) the effect of the CIM is relatively small for bound ions such
as F− [17] and so an EPP is preferred for simplicity. The consequences of this simplification
will be noticed when we compare the energies of fluorite with cotunnite, which has a different
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coordination number. A difference from the previous CaF2 potential is that a potential of the
form

uEPP+− =
Bij

rij
e−aij rij +B ′ije

−a′ij r2
ij (2.2)

is used to fit theab initio data. In fact, as for CaF2, a single exponential can be used to fit
the completeab initio data set over the lattice parameters available (down to 4 au). However,
in the present work the cation polarizability is several times larger than that in CaF2 (see the
following section) which can lead to instability problems at very small anion–cation separations
(considerably smaller than the normal lattice separation). The second exponential acts as a
steep repulsive wall at separations forR < 4a0. The (Bij /rij )e−aij rij form was chosen in
preference to a standardBije−aij rij potential since the former gave a better fit to theab initio
data. The fitted exponentials are shown in figure 1. The anion–anion and cation–cation
potentials were derived from the same source and were fitted to single exponentials.
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Figure 1. Two fits to theab initio data points [13] are shown. The dashed curve shows the best
fit to the data with a single exponential and the dot–dashed one the effect of adding a further steep
repulsive term. This is seen to have no effect in the region of the Pb2+–F− nearest-neighbour
separation (4.6a0).

The choice of the second exponential termsB ′+− anda′ij is relatively less well controlled.
The highly polarizable nature of the cation means that, at very short anion–cation separations,
the attractive ion–dipole forces can still overwhelm even theBear/r term. The use of the
second exponential term acts to prevent this by imposing a much harder repulsive wall at
r < 4a0. Since the shortest anion–cation separation considered in theab initio data used to
fit the above potential is 4a0, the choice of the additional terms is relatively free. As a result,
we have chosen parameters which avoid the above instability whilst leaving unaffected such
properties as those of the low-temperature phonons. It is, however, interesting to speculate as
to the physical reasons behind the existence of such a relatively hard potential wall. A possible
interpretation is that the Pb2+ ion could be thought of as a Pb4+ ‘core’ with an s2 outer shell.
In this picture the s2 outer shell dominates the repulsive interactions atr > 4a0 whilst the
Pb4+ core would dominate below this point. Indeed, analysis of the crystal structure of PbF4

shows that the two shortest Pb–F distances in this system are of the order of 3.67a0 and 4.01a0

respectively [21], certainly consistent with the proposed hard wall just below 4a0.
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The dispersion parts of the pair potential include the long-rangeC6r
−6 (dipole–dipole)

andC8r
−8 (dipole–quadrupole) terms, withr-dependencies modified at short range to account

for dispersion damping [22]. The dispersion parametersC6 andC8 are taken from Pyper [13]
and are calculated from the in-crystal polarizabilities (αF− = 7.783 au andαPb2+ = 17.9 au
respectively). Notably, the dispersion interactions for ion pairs involving Pb2+ are much
greater in magnitude than for Ca2+ in CaF2 [17]. Note too that the anion–anion dispersion
parameter, at 34.372Eha6

0 is much smaller than that (179.6Eha6
0) in the rigid-ion potential of

Walkeret al [23]. There is a clear analogy with the previous studies of CaF2 [17], where an
unphysically large anion–anion dispersion parameter is found in the rigid-ion potential which
gives fast-ion conduction.

In our work, the dispersion damping is described by Tang–Toennies functions (as in [17]),
which contain a single parameter which specifies the length scale on which the damping
becomes effective. In the present work the CaF2 parameters are used [17]. All potential
parameters are given in table 2.

Table 2. Pair-potential parameters (equation (2.2)).

Parameter Anion–anion Anion–cation Cation–cation

a 2.788 1.435 2.1447
B 2576.0 110.29 4613.6
a′ 0.0 1.0 0.0
B ′ 0.0 50000 0.0
C6 34.372 53.045 91.858
C8 538.779 711.042 1022.752

2.2. Representation of the polarization effects

In the current work only dipole polarization effects will be considered. In the perfect fluorite
structure, used to parametrize the short-range potential, the ions lie in ideal tetrahedral or cube-
centre sites and so no dipoles are induced. In the high-pressureα-PbF2 structure (≡α-PbCl2) the
ions are in less symmetric (though high-coordination) environments and so a small contribution
to the lattice energy from the induced dipoles is anticipated.Ab initio calculations on distorted
crystals in which dipoles may be induced on the ions have shown that the total induced dipole
can be usefully decomposed into two effects [24,25]. Firstly, the electric field due to the ionic
charges in the distorted crystal induces a ‘Coulombic’ dipole whose magnitude is governed by
the in-crystal polarizabilities derived from electronic structure calculations (αF− = 7.783 au
andαPb2+ = 17.9 au). Secondly, this dipole must be corrected for short-range effects which
have been examined in electronic structure calculations for alkali halide systems [26].

To deal with these effects in the simulation, we include an explicit representation of the
induced dipoles as variables, comparable to the ion positions, used to characterize the state
of the system and its energy. The induced dipole on each ion, for a given configuration, is
obtained by minimization of the potential

Upol =
N∑
i=2

N−1∑
j=i+1

(T (1)(rij )fij (rij )(qjµi − qiµj ) +µi · T (2)(rij ) · µj ) +
∑
i

1

2
kiµ2

i (2.3)

with respect to all the dipoles{µi}. These self-consistent dipoles are the induced dipoles
of the model andUpol evaluated with these dipoles is the polarization energy associated
with that configuration. The final term in the equation is a Drude-like representation of the
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energy required to polarize each ion and the force constantki is determined by the ionic
polarizability (αi):

ki = 1

2αi
. (2.4)

In equation (2.3),qi is the formal ionic charge, and theT (n)-tensors are the normal charge–
dipole and dipole–dipole interaction tensors:

T (1)α (r) = −rα/r3 T
(2)
αβ (r) = (3rαrβ − r2δαβ)/r

5. (2.5)

Ther-dependence of the charge–dipole interaction is modified to account for the short-range
induction effects uncovered in the electronic structure calculations by the factorfij (rij ), which
depends on the identities of the ions involved and which is a function of their separation. A
suitable form for this function has been found to be (as suggested by the Tang–Toennies
dispersion ‘damping’ functions [27])

fij (r) = 1− cij
( 4∑
k=0

(bij r)
k

k!

)
e−bij r . (2.6)

This function switches from the large-r value of 1 (meaning that the charge–dipole interaction
regains the pure Coulombic form in this limit) to 1− cij at r = 0 with a range determined
by bij .

For an anion, the short-range interactions with a nearest-neighbour cationopposethe
dipole induced by the electric field from that cation. To fit theab initio data on halide-ion
polarization in alkali halides [26] a value ofc−+ = 2.0 has been used and, with this choice,bij
has been found to scale with the sum of the ionic radii (σ i):

bij = d−+

σ i + σ j
(2.7)

as would be expected from the physical picture of the origin of the short-range effect in the
overlap of ionic charge densities. It is not clear that these alkali halide considerations will
transfer directly to the PbF2 situation, although similar values might be expected. We have
experimented with a range of values forc−+ andb−+ in the present calculations and find,
from a comparison of predicted and experimental phonon frequenciesvide infra, that values
of c−+ = 1.5 andb−+ = 1.8 are the most successful (cf.b−+ = 1.60 for KF, in which the cation
has a similar size to the Pb2+ ion).

Much less is known about the short-range polarization of a cation by an anion, although
general considerations indicate that, in contrast with the anion–cation situation, it should
enhancethe Coulombic dipole, i.e. thatc+− should be negative. For CaF2 various empirical
considerations [17,28] indicate that if the range parameterb+− is set equal to that for the anion–
cation case,b−+, since they refer to the overlap of the same charge densities, thenc+− ∼ −0.4.
In the present work we have explored the effect of varyingc+− on a variety of properties,
whilst keeping all the parameters determinedab initio fixed. We will illustrate, to some extent,
the way that the polarization effects influence the observable properties below. The optimum
value forc+− is∼−0.3, and most of the results below have been obtained with this value.

3. Testing the potential

3.1. Energy/volume data for fluorite and cotunnite

Table 3 lists the calculated volumes and energies at the energy minima for both the fluorite and
cotunnite structures along with the transition pressure. The experimental data are from [29] in
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Table 3. Comparison of the model volumes, energetics and transition pressures for the two major
forms of PbF2.

Observable Experimental Calculated Percentage difference

β-form volume per formula unit 52.395 Å3 51.45 Å3 1.8%
α-form volume per formula unit 47.74 Å3 47.48 Å3 0.5%
β-form lattice energy 2475 kJ mol−1 2446 kJ mol−1 1.2%
Transition pressure 0.5 GPa 3.0 GPa 500%

the case of the volumes, and [8] for the lattice energy (calculated from the Born–Haber cycle).
Given that no empirical data have been used in the non-polarization part of the potential, this
is considered good agreement between the predicted and observed properties of the perfect
crystals.

The energy/volume curves are shown in figure 2. The 0 K transition pressure was calc-
ulated to be 3 GPa from the common tangent to the two curves. At first sight, the comparison
of experimental (0.5 GPa) [2] and calculated transition pressure suggests a serious problem.
However, it should be noted that a small increase in the lattice energy of theα-form (of
order 5 kJ mol−1, i.e. 0.2% of the lattice energy) would bring the gradient of the common
tangent into agreement with experiment. In fact, our calculation is biased towards theβ-form,
as the pair potential is based upon a fit to the energetics of the fluorite phase. Were we to
allow for the coordination number dependence of the potential, by using a compressible-ion
model (CIM) [20,30], it is likely that the energy of theα-phase would be reduced. In general
terms, allowing for ion compressibility stabilizes higher-coordination structures relative to the
predictions of a pair potential. For CaF2, for which a CIM was devised, we showed [17] a
stabilization of theα-phase of the required order to bring the PbF2 data into agreement with
experiment. The effects of entropy, ignored in these calculations, may also have an effect on
the transition pressure, since the experimental value refers to room temperature.
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Figure 2. Internal energy versus volume curves are shown for theα- (cotunnite, or PbCl2 structure;
solid line) andβ- (fluorite, or CaF2 structure; dot–dashed line) forms of PbF2, after relaxation of the
atomic positions. For the PbCl2 the effect of omitting the cation polarization is illustrated (dashed
line).
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As remarked previously, polarization effects play no role in the cubic fluorite structure,
but they do contribute to the energetics of theα-phase, where the site symmetry is lower.
They were found to increase the magnitude of the lattice energy of theα-form by around
28 kJ mol−1 (i.e. around 1%). Cation polarization is responsible for approximately half
the energy difference, and in the absence of cation polarization, the transition pressure is
calculated to be 13 GPa, which is substantially higher than that calculated when cation
polarization is included. We noted in the introduction that the transition pressure for PbF2

is significantly lower than would be expected, on a simple ionic picture of the interactions,
from a comparison with the alkaline-earth fluorides. It seems plausible to attribute this to
the increased size of the polarization effects in PbF2, associated with the increased cation
polarizability.

3.2. The PbF2 molecule

In general, one would not expect an ionic interaction model for condensed phase properties to
transfer well to describing the isolated molecule—in the condensed phase the electron density
of anions is compressed by an effective potential from the charge densities of neighbouring
ions, so the polarizability and ion size are smaller than in the gas phase [19,31]. Nevertheless,
for CaF2 we were able to obtain some useful information about the cation polarization effects
from considerations of the properties of the CaF2 moleculewhich has been studied spectro-
scopically in the gas phase and also in an inert matrix. Within the ionic model, the bending
of the F–M–F bond is due to the polarization of the cation, primarily by the charges on
the anions, which can occur only when the molecule is bent. A dipole induced on the
cation acts to screen the repulsive anion–anion interactions and can lead to a favourable
bent configuration. The CaF2 molecule is apparently linear in isolation (though with a
very low bending frequency) and bent to about 140◦ in a matrix, which we were able to
reproduce with the ionic model [28]. In PbF2 the observed degree of bending is much
greater,∼98◦ [32], which is consistent with the much greater polarizability of the Pb2+ cation
compared to that of Ca2+. The energy minimum for the present potential model is not in
particularly good agreement with the experimental geometry—the bond angle is too small
by about 20% and the bond lengths are too short by about 5%; it would appear that the ion
compression effects to which we referred above are too severe in the PbF2 case to allow
for the potential to be transferred. However, we can still obtain useful information on the
polarization effects by comparing the dipole moment of the molecule with that calculated
from the model at the experimentally observed geometry. The self-consistent molecular
dipole generated in this configuration was found to be 6.24D compared with the experimental
value of 5.669D. The value of 6.24D results from the partial cancellation of the dipole
due to the ionic charges of 13.71D by the induced dipoles, and therefore suggests that
the model of the internal charge distribution is well represented by the polarization model.
Furthermore, it is to be expected that the cancellation of the ion charge dipole moment
by the induced dipoles will be less complete in the calculation than in reality, since in a
PbF2 molecule the fluoride ‘ion’ will be less compressed than in a crystal, and hence the
polarizability of the fluoride will be higher in the molecule than theab initio in-crystal value
of 7.783 au.

The Hessian of the potential evaluated at the minimum-energy geometry given in ref-
erence [32] gives the following vibrational frequencies: 678 cm−1 (A1), 565 cm−1 (B2) and
148 cm−1 (A1). These compare quite well with the experimentally observed values (Ne matrix
isolated): 545.7 cm−1 (A1), 522.5 cm−1 (A1) and 170 cm−1 (A1).
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3.3. Phonon dispersion relationships

Whilst the static calculations (section 3.1) indicate that the potential works well in the region
corresponding to the crystal energy minima, an accurate representation of a dynamical process,
such as superionicity, requires the potential to be accurate over a broader range of possible
ion configurations. A convenient method for examining the potential for general, distorted
condensed phase configurations is to calculate the phonon dispersion relations. Different
phonon frequencies correspond to different lattice vibration modes, all of which will involve
different relative displacements of the ions. The phonons are particularly sensitive to the
polarization effects, whereas, as we have remarked, these have relatively little effect on the
properties of the perfect crystals. In fact, comparison of the phonon dispersion curves for
PbF2 with those for the alkaline-earth fluorides with the fluorite structure reveals interesting
differences. The alkaline-earth systems (e.g. the CaF2, SrF2 and BaF2 data in references [9–11])
all have very similarly structured curves, but the shape of some branches is qualitatively
different for PbF2, and we shall show that this is strongly related to the high polarizability of
the Pb2+ cation.

The phonons are calculated from simulation using the following equations for the
longitudinal and transverse currents of the charge, mass and a third variable which picks
out the relative motion of F− ions. The Fourier transforms of the correlation functions of
these currents contain peaks which give the phonon frequencies at a particulark-vector. The
longitudinal correlation function,CLXX, for the variableXj (=Qj , the charge on ionj , for
example) is given by

CLXX(k, t) =
〈( N∑

j=1

−Xj(t)ik · vj (t)e−ik·rj (t)
)( N∑

l=1

Xl(t)ik · vl(t)e−ik·rl (t)
)〉

(3.1)

whilst the transverse correlation function is given by

CTXX(k, t) =
〈( N∑

j=1

−Xj(t)ik ∧ vj (t)e−ik·rj (t)
)
·
( N∑

l=1

Xl(t)ik ∧ vl(t)e−ik·rl (t)
)〉
. (3.2)

The frequencies at thek-vector{ξ, 0, 0}, {ξ, ξ,0} and{ξ, ξ, ξ} symmetry directions can be
calculated in the case of a simulation cell based on 4× 4× 4 unit cells (768 atoms) forξ = 1

4,
1
2, 3

4 and 1, whilst for 3× 3× 3 unit cells (324 atoms), the frequencies at pointsξ = 1
3, 2

3
and 1 can be obtained. WithXj = Qj , the optic mode peak dominates the spectrum, and for
Xj = Mj (ion mass) the acoustic branch is dominant. To pick out the second ‘optic’ branch,
Xj is set equal to unity for ions on one of the two fcc sublattices, which together make up the
simple cubic lattice of F− in the fluorite structure, and to minus one for the other sublattice.

Figure 3(a) shows the phonon dispersion curves calculated from a dynamics run of 60 ps
at 10 K with a full dipolar PIM with a cation dipole polarization enhancement parameter
of c+− = −0.3, and the other potential parameters as discussed in section 2. The run was
started from a perfect crystal at the experimental density and random velocities selected from
a Maxwell–Boltzmann distribution. The experimental curves [3] are shown for comparison.
The agreement both in terms of absolute frequency and the shapes of the curves is excellent.

The role of the cation polarization in obtaining this agreement is illustrated by performing
a second set of simulations with all potential parameters and ionic masses as above, except that
the polarizability of the ‘Pb2+’ ion is set to a value of 5.2 au. This is the polarizability of an Sr2+

cation which, as we have remarked previously, is the closest in size to a Pb2+ cation amongst
the alkaline earths. By making this substitution we hope to identify the reasons underlying
the qualitative difference of shape of the phonon dispersion curves for the alkaline-earth and
lead fluorides which were commented on in the introduction. The resulting phonon dispersion
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Figure 3. Phonon dispersion curves obtained with three different models for the cation polarization
are shown and compared with the experimental data forβ-PbF2 (solid lines: longitudinal; dotted
lines: transverse). In all cases the triangles represent the simulated longitudinal modes and the
circles the transverse. In (a) the dispersion curves calculated with the full model are shown. In (b)
the cation polarizability is assigned a value of 5.2 au, which is the value appropriate to a Sr2+ ion:
note the straightening of the TO1 mode (with respect to (a)) along (ξ , 0, 0) inter alia. In (c) we
show the dispersion curves calculated with the cation polarization enhancement omitted: note the
worsening of the agreement with experiment for TO2, in particular.
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Figure 3. (Continued)

curves are presented in figure 3(b), where they are, again, superimposed on the experimental
dispersion curves for PbF2 in order to facilitate comparison with figure 3(a). The calculated
phonon dispersion curves with the reduced cation polarizability now show the characteristic
features of the alkaline-earth fluorides [9–11]. The TO1 mode now has an almost constant
frequency along the (100) direction compared with a significant softening towards the X point
seen in PbF2 (figure 3(a)). The TO2 mode is significantly softer at the0 point in the PbF2
curves. To obtain more quantitative agreement with the SrF2 data, we would have to shift the
cation mass, which strongly affects the frequencies of the acoustic modes.

The softening of the TO1(X) and TO2(0) modes by the cation polarization can be
understood from a consideration of the ionic displacements for these modes. Figure 4 shows
the ion motions relating to the two TO modes considered above (TO1(X) and TO2(0)) and
the LO1(X) mode which remains alkaline-earth-like. Both of the TO modes shown would
be heavily influenced by cation polarization effects. In the TO2(0) mode, for example, the
cation fcc sublattice moves againstboth the anion fcc sublattices resulting in a large electric
field on the central cation and hence a large induced dipole for a polarizable cation which acts
to soften this mode with respect to the alkaline earths. Conversely, the TO1(0) mode (not
shown) involves the two anion fcc sublattices moving out of phase leading to much smaller
fields at the cation site and so much less significant softening. The LO1(X) mode also remains
alkaline-earth-like as the motion involves the symmetric ‘breathing’ of the anion sublattices
about the cation. Indeed, the study of the mode frequencies shows that this mode reduces in
frequency slightly as the cation size increases—that is, as the anion sublattice expands slightly.

Finally, in figure 3(c) we show the phonons predicted for PbF2 when the cation polarization
enhancement factorc+− is set to zero. It can be seen that there is a worsening in the quality
of agreement with experiment relative to figure 3(a) (wherec+− = −0.3) in the polarization-
sensitive branches. Use of a higher (more negative)c+− softens the TA branch too much.
Overall we see that by adjustment just of the parameters controlling the short-range polarization
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a)

b)

c)

Figure 4. The ionic displacements in the normal modes corresponding to
certain key points in the phonon dispersion curve, to illustrate the origin
of their (in)sensitivity to cation polarization: (a) TO1(X); (b)TO2 (0);
(c) LO(X).

terms, whilst keeping all other parameters at values where they have been fixed by electronic
structure calculations, we obtain good agreement with experiment. The optimal short-range
polarization parameter is similar to that found in other systems. Even in the full model,
figure 3(a), the TO2 mode is at slightly too high a frequency, whereas all other branches seem
to be in good agreement with experiment. This could be remedied by a change in the short-
range repulsion between two F− ions. We have not permitted ourselves this freedom in the
pursuit of agreement with the experimental data, as this part of the potential was derived from
theab initio calculations.

4. The superionic state

4.1. Ion diffusion

Calculations to establish the position of the transition to superionic behaviour were carried
out on systems of 324 ions (3× 3× 3 unit cells). A series of runs in which the temperature
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was progressively increased was carried out, and the mean square displacements of the ions
monitored to detect the onset of diffusion. Each run was of roughly 100 ps duration. The
temperature was controlled with a Nosé–Hoover thermostat and the volume of the cell was
allowed to change isotropically to maintain constant pressure [33, 34]. An example of the
mean square displacements of the ions from the initial configuration of such a run is shown in
figure 5. It can be seen that at this temperature (950 K) diffusion of the anions begins shortly
after start-up with the ions quickly achieving their mean diffusion rate. The cations, on the
other hand, show no diffusion. At lower temperatures anion diffusion commenced only after
an appreciable waiting time, which is probably related to the time for the creation of some
kind of defect on the anion sublattice. The presence of this waiting time, with its variation
from run to run, made the accurate location of a starting temperature for ionic conduction
difficult . Starting from an already superionic configuration (obtained from a simulation at
higher temperature), superionicity was retained for several thousand MD steps in simulations
at temperatures down to 650 K. These results are consistent with a superionic ‘transition
temperature’ in the range 700–950 K, which is higher than reported experimentally [35] by
∼250 K. Even at the upper end of this range, the transition temperature is much lower than
in the CaF2 calculations [17] under comparable conditions. Much of this lowering is due to
the cation polarization. In simulations carried out with unpolarizable cations and otherwise
identical potentials and simulation conditions, ion diffusion was not detected until∼1400 K. At
these temperatures the polarizable-cation simulations had already melted (at around 1200 K);
melting did not occur until much higher temperatures in the unpolarizable-cation case. It would
appear that the cation polarization plays an important role in stabilizing the unsymmetrical
ionic arrangements associated with the anion diffusion in the crystal, and in the molten state.
The temperature for the onset of ion conduction was lowered by an increase in the cation
polarization enhancement factor (fromc+− = −0.3). However, this would worsen other
predicted properties, especially the phonon dispersion curves.
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Figure 5. The mean anion and cation displacements from the initial configuration during a run at
950 K.

From the slope of the mean square displacement versus time (as in figure 5) a value
for the diffusion coefficient may be calculated. At 1000 K, for example, this givesD =
1.9× 10−5 cm2 s−1. If we assume independent ion migration we may estimate a value for the



9022 M J Castiglione et al

ionic conductivity ofσ = 1.4�−1cm−1 which is about one-half of the experimental value [35].
This underestimate of the ion mobility is qualitatively consistent with the high value of the
transition temperature.

The possibility of superionic conduction in theα-phase (cotunnite) was also investigated.
At a temperature of 1000 K, where theβ-phase shows appreciable conduction, the diffusion
coefficients of cations and anions were zero. This is in agreement with observations of the
macroscopic conductivity in theα-phase [2]. Recent nmr studies [36] have shown that the
F− ions are involved in some kind of hopping motion in this phase, and that this is promoted
by KF doping. However, it would appear that this hopping does not lead to ionic motion
on macroscopic length scales, and hence to conduction. A clarification of these apparently
contradictory observations is one of the long-term objectives of our study.

4.2. Diffuse neutron scattering

The disorder in the superionic state gives rise to appreciable diffuse scattering and this has
been studied using single-crystal neutron scattering for SrCl2 and CaF2, as well as PbF2, by
Hutchingset al [4]. Intriguingly, the patterns of diffuse scattering are different for the three
materials, which suggests that the type of fluoride-ion disorder may be different in each. It is
important, therefore to examine the pattern of diffuse scattering predicted in the simulations,
and check that it agrees with the pattern found experimentally for PbF2. Contour plots of the
diffuse intensity for PbF2 show a broad peak along the [100] direction centred at roughly (2.3,
0, 0) with a second, weaker feature along [111], peaking just beyond (2, 2, 2).

The total neutron scattering intensity is proportional to

Stot (Q) = SPbPb(Q) + 2SPbF(Q) + SFF(Q) (4.1)

where

Sαβ = 〈A∗α(Q)Aβ(Q)〉. (4.2)

Aα(Q) gives the amplitude of scattering by speciesα at scattering vectorQ:

Aα(Q) =
Nα∑
j=1

bαcohe
iQ·rj (4.3)

wherebαcoh is the value of the scattering length for speciesα. In simulations, periodic boundary
conditions are employed, so the only points at which scattering intensity can be calculated must
satisfy

Q = 2π

na
(lx, ly, lz) (4.4)

wherea is the unit-cell length of the crystal,n is the number of unit cells along a given direction
of the simulation cell, andlx , ly andlz are integers. The total scattering contains contributions
from the average structure of the system, which is responsible for the Bragg scattering:

SBragg(Q) = |〈APb(Q) +AF(Q)〉|2 (4.5)

and from diffuse scattering, which is due to thermal and structural disorder:

Sdiff (Q) = Stot (Q)− SBragg(Q). (4.6)

These quantities were calculated in simulations performed at 1098 K using simulation
cells containing 4× 4× 4 unit cells. The diffuse scattering intensity distributions along the
principal [100], [111] and [110] directions are shown in figure 6. The horizontal axis is labelled
by n, whereQ = nQ̂ andQ̂ is a base vector for each direction, i.e.Q̂ = (2π/a)(1, 0, 0),
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graphic directions at 1098 K, plotted
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for [100], Q̂ = (2π/a)(1, 1, 0) for [110] andQ̂ = (2π/a)(1, 1, 1) for [111]. The thermal
diffuse scattering should constitute a background rising asQ2 along each direction. As can
be seen, the main areas of additional intensity (away from the Bragg peaks), which is due to
the structural disorder, lie in exactly the same regions ofQ-space as in experiment, i.e. around
(2.25, 0, 0) and (2.25, 2.25, 2.25).

A consideration of the real-space structures responsible for these features, their relaxation
and their relationship to the superionic conduction process will be given in a future paper. Note
that these issues were also addressed in the experimental paper [4].

5. Conclusions

The results indicate that theab initio parametrized, formal charge ionic model gives excellent
predictions for a range of properties of PbF2. Qualitative differences between PbF2 and
alkaline-earth fluorides of similar cation size in properties such as the melting and superionic
transition temperature, the transition pressure between theβ- andα-forms, and the shapes of
the phonon dispersion curves seem to be attributable to the highly polarizable nature of the
Pb2+ cation. The predicted transition temperature appears to be too high by about 150 K with
respect to experiment, though it is possible that improved simulation technique (larger system
size) would improve this somewhat.

The pattern of diffuse neutron scattering predicted in the simulations is in good accord with
that found experimentally, which opens the way for further examination of the F−-ion disorder
and its relationship to the anion diffusion. The fact that the potential should be transferable to
mixtures of PbF2 with other fluorides, notably KF, will enable a study of the enhanced diffusion
in such mixtures.
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